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Abstract

It is often proposed that the redundancy in choosing a force distribution

for multiple arms grasping a single object should be handled by minimizing a

quadratic performance index. The performance index may be formulated in terms
of joint torques or in terms of the Cartesian space force/torque applied to the

body by the grippers. The former seeks to minimize power consumption while the
latter minimizes body stresses. Because the cost functions are related to each

other by a joint angle dependent transformation on the weight matrix, it might

be argued that either method tends to reduce power consumption, but clearly the

joint space minimization is optimal. In this paper, a comparison of these two

options is presented with consideration given to computational cost and power
consumption. Simulation results using a two arm robot system are presented to

show the savings realized by employing the joint space optimization. These

savings are offset by additional complexity, computation time and in some cases

processor power consumption.

1. Introduction

Some of the recent developments in multiple arm manipulation of a commonly

grasped body include the work of Hayati [1], Alberts [2], and Carnignan [3].
The common thread between these papers is that each employs the minimization of

some form of quadratic performance index to choose an appropriate load
distribution. Hayati proposed an extension of Mason's [4] hybrid position/force
control in which the inertia of each arm is artificially extended to include a

portion of the payload inertia. From a practical point of view, the method may
be difficult to implement effectively, because it requires precise knowledge of

the inertial properties of the arms and of the jointly manipulated objects as
well as the solution of inverse dynamics. Alberts closes a force feedback loop

around a kinematic resolved rate controller for multiple arms, thus realizing

the Damping Control Method. As in Hayati's work the problem of redundancy in

determining the distribution of load among the manipulators is handled by

minimizing a quadratic cost function in task-space force and torque. This tends
to minimize internal forces in the body while maintaining control over a

prescribed force and torque interaction with the external environment. Alberts
formulation does not consider the closed chain dynamics of the manipulators and
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payload, but rather each manipulator is viewed as an actuator with an
independent control system. Carnignan used a quadratic cost function to

minimize joint space torques including those due to manipulator kinetics, but
due to the inclusion of the manipulator kinetic effects, undesirable internal

forces may be produced in the body. This method is computationally more
expensive than task space optimization.

It can be argued that minimizing a quadratic cost function in joint space
has greater power efficiency than a minimization in task space, but at what

computational cost? This paper compares the task space versus joint space cost
functions with respect to power efficiency and computational cost. The

development is to be based on Alberts' task space cost function and a joint
space cost function developed along similar lines. The computational cost of

using the joint space minimization scheme is similar to Carnignan's method. The

torques required to compensate for manipulator kinetics are not included in the

minimization so as to avoid imposing unnecessary internal forces and torques
within the manipulated body.

2. Power Cost Calculation

In a multiarm robotic system, minimization of a joint torque based

quadratic cost function would tend to minimize the dissipated power used by the
motors under static conditions. 1

A minimization scheme to establish an "optimal" force distribution could be

formulated in either joint space or task space. From the standpoint of power
used to drive the joints, it would be optimal to formulate the minimization in

joint space. In this paper the question considered is that of how much power

really can be saved by optimizing in joint space as opposed to task space.

Based upon a task space quadratic performance index

T
Qt = -FtWt_t (I)

the task space optimal load distribution force equation [2] is

Zt = At£ (2)

where

At = wtlHT[HwtlHT] -1 (3)

and _t is a vector of wrench vectors (as in Equation 15, Appendix I) such

that each components F(_I of_t is a wrench vector applied to the body at
the grasp point of the-i manlpulator and subscript t denotes task space. H

is a matrix of Jacobian transformations that depends upon the locations of the

grasp points of each arm relative to the applied external force F. The weight

1To truly minimize power consumption under dynamic conditions the cost

function should include a term representing the product of joint torque and

joint velocity. This is discussed further later in reference to Equation (9).

432



matrix is given by Wt = diag (v1, v2,...,v N) where N is the number

of arms and vi is a diagonal weight matrix reflecting the relative cartesian
end effector force and torque capabilities of the ith arm.

Using a similar development (Appendix I) but, based upon a joint space

quadratic performance index

Qj = TTwjz (4)

the joint space optimal load distribution force equation is

_rj= AjF
(5)

where

Aj = j-Twj-Ij-1H[Hj-Twjj'IH-T] -I
(6)

with W" = diag (w1, w2, ...,wN) and wi is a diagonal matrix whose
element_ are the squares of the reciprocals of the relative joint torque

capabilities of the ith arm. Subscript j denotes joint space.

The cost function is an indication of power used since torque (3) is

proportional to current and current squared is proportional to power
dissipated. To compare power consumption on an equal basis the cost of task

space optimized load distribution was evaluated in terms of the joint space cost
function. Thus, for evaluative purposes, the torque-squared cost of executing

the task space optimization scheme can be expressed as

Qtj = TTwj Tt (7)

where Tt = JTAt_FF

and the cost associated with joint space optimization is given by Equation (4),

that is Qil = Qi- The cost resulting from the joint space formulation will

always be _i_ass n that of the task space formulation according to the above
criterion.

The power used by a motor is

2 KE KE

Power = laR + l_T mTm + l_TmT l
(8)

where Ia is the armature current
R is the armature resistance

KE is the back emf constant

KT is the torque constant
is the angular speed of the rotor

Tl is the torque of the load
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Tm = Tf + Dm where Tf is constant friction

and D is the viscous damping coefficient.

The current Ia is related to the dynamcs of the motor by

Ia : 1 [(Jm + Jl)dm + Tm + TI] (9)

where Jm is the motor inertia and Jl is the load inertia. Observe that

in the jointspace minimization presented here (7) minimizes the power due to
the term laZR in (8) but does not account for the power associated with

mTl in the last term of (8). From a practical point of view it appears that

the contribution of this term will normally be small. In simulations conducted,

in which the load velocity was 0.1 m/s, the mT l term resulted in power
difference of less than I%.

The percent difference in power is defined as follows

PN = Pt - Pj * 100

Pj

(10)

where Pt and Pj represent the power used by task and joint space
respectively.

The power difference is

PD = Pt - Pj where PD is in watts (11)

A simulation 2 was used with the system parameters of the NASA LTM 3 (given

in Appendix Ill) to compute the power used by the two-arm LTM system in moving a

40 lb. payload on Earth. The center of gravity of the object was at the grasp

point of one of the arms. The two arms moved horizontally without rotating the
object. For this trajectory PD and PN were plotted in figures i and 2
respectively. The initial Pj = 1093 watts.

2The simulation is a combination of ROBSIM (a full dynamics robot simulator

developed by NASA LaRC) and user coded. Robsim simulated the robotics dynamics
and the user code calculated the load distributed joint torques and costs.

3LTM is an acronym for the Laboratory Telerobotic Manipulator developed for

NASA LaRC by Oak Ridge National Laboratory. The LTM is a seven-degree-of-

freedom arm employing differential friction drive joints. For simplicity the

differential joint drive are treated as conventional gear driven joints.
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3. Computational Cost Calculation

In a real-time computer program it is desirable to keep computationally
expensive operations to a minimum. The number of operations it takes to

calculate task space and joint space load distribution are determined below.

For this analysis the following assumptions are made:

1. The manipulators grasp points are fixed while the body is in motion,
thus H remains a constant matrix.

2. W does not change over the motion of the body.

3. All manipulators have the same number of degrees of freedom.

In task space A is constant thus requiring only a matrix vector multiply to

calculate rt. A is a 6N x 6 matrix where N is the number of manipulators
grasping the body, and F is a 6 x 1 vector needing:

36N multiplies;
30N additions

to calculate rt.

Joint space will have the same operations as above plus the operations to

calculate A. The total number of operation needed to calculated _j as
derived in Appendix II is:

N(48n + 72) + 195
71

N(48n + 30) + 206

multiplies
divides

additions

With the need to calculated the jacobian inverse the total number of operations
to calculate rj as derived in Appendix II is:

N(60n + 267) + 195

71N + 71

N(58n + 236) + 206

multiplies
divides

additions

Currently the most powerful space qualified procesor is the Harris 80C86. Based

on using this processor with a 5 mhz clock and the number of arms and degrees of
freedom (DOF), the results Table I, II, and Ill are obtained. The entries in

the tables represent the number of times the computation can be executed in 1
second.

Number of Arms

D F

e r 6

g o e
r f e 7

e d

e o 8

s m

17.5

16.4

15.3

3

12.4

11.5

10.7

4

9.54

8.86

8.27

Joint Space with Jacobian Inverse Calculated

Table I
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D F

e r

g o e
r f e
e d
e o

s m

2

29.8

27.2

25.0

3

21.9

19.8

18.1

4

17.3

15.6

14.2

Joint Space without Jacobian Inverse Calculated
Table II

D F

e r

g o e
r f e

e d

e o

s m

6

7

8

2

413

413

413

3

275

275

275

4

206

206

206

Task Space
Table Ill

The computational cost of task space optimization is small enough to execute the

code on an existing processor whereas joint space optimization would likely

require a separate processor. In this case the power required to operate
additional processing equipment must be considered. The power requirement of an
64K 80C86 board based on Harris radiation hardened components is 30 watts.

4. Summary

It has been shown that an apparently significant amount of power can be

saved by employing the joint space optimized load distribution. In the example

presented the largest savings over task space optimization realized was about 25
watts. This can be viewed as an extreme case. It is important to note,

however, that the joint space optimization represents a substantial increase in

computational burden. If this results in a need for additional processors, the

power required to operate them might offset the savings realized by the

optimization scheme.

In the future, space qualified processors will be available that are much

more powerful and possibly more power efficient than those now used. In the
case where a surplus of efficient computing power is available, the joint space

optimization may prove to be the method of choice.
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Appendix I

5. Joint Space Optimal Load Distribution

Assume that a desired net cartesian space wrench vector F acting on the
body with known point of application p is specified. The wrench vector is
made up of cartesian space force f and moment m vectors such that

b

(12)

This wrench could be to counteract gravitational loading or inertial reactions

due to body acceleration, or to apply a force to the external environment

through the jointly manipulated object. Now consider a system of N

manipulators, where F(i) denotes a cartesian space wrench applied to the

jointly manipulated body by the end effector of arm i. The following
conditions must be satisfied in order to establish equilibrium:

N N

f = Z (13) and m = Z (m(i) + r_p(i) X f(i) )
- i=1 - i=1 - -

(14)

where f(i) and m(i) are the force and moment vectors, respectively, that

make up- _(i)

(15)

and _[p(i) is a vector drawn from the point of application p of the force

f to the grasp point for manipulator i. The minimization procedure operates on

quadratic function Q in the vector T, with positive definite symmetric
weighting matrix W

Q = T W _ (16)

where

= JTr,

Z--
F(

jT is the jacobian transpose of the manipulator

i] and W = diag (Wl,

W 2 , , W N )

D 0 e

Conditions (13) and (14) are expressed in matrix form as

(17)
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I o Eri+ ;13!_3 ,---. -i_ix ""
rp(1)X]| 13 ][:]13 I 0 (1)

[rp(N)X] I 13

where, 13 is a 3 by 3 identity matrix and [_(i)X] is a matrix that

operates on f(i) to form the cross product --_[p(i)X _f(i). A more compact

expression fo-r (18) is

(18)

=F

HJT T = F

Using a Lagrange multiplier
cost function is obtained•

(19)

to append equation (19) to (16) the augmented

= _TwT - xT(Hj'TT -F_) (20)

The optimal solution must satisfy

@--_= O, that is 2TTw - xTHj-1 = 0 (21)

Rearranging and applying equation (19) to equation (21)

T = 1 HW-1j-1HTx which yields X = 2(Hj'Tw-1j-IHT)-I[ (22)

Now upon eliminating X between equations (21) and (22) the final expression

for joint torques is obtained•

T = W-Ij-1HT(Hj-Tw-Ij-1HT)-IF = AF (23)

Appendix II

To count the operations in A it is necessary to first simplify

two matrices A and B, such that

where A = AB-1, A = j-Twj-Ij-1HT and B = HA

Calculating A:

J;10J21 0 1 w-l=
• j_l I ' j

]0 and

w wil w_I
HT=

A into

HT

:I
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where j_l is the jacobian inverse for manipulator i,

wT1 is the weight matrix inverse for manipulator

and HT
i

SO

is the transform grasp point to controlled force F

manipulator i.

for

and

A = j-TwTIj-1HT- =
J

o ]"-1 -1 -T T

L 0 JN WN JN HN

B = HA =

0 -1 -1 -T T
HIJN WN JN HN

.-T.-I .-1.T
The cost to calculate ui Hi ui _i is:

-I T
Ji Hi =

at a cost of

[I[ioozn x6 1 -z o
full 0 I I y -x

matrix J 1
0 1

Io

n*(6 multiplies + 6 additions)

X

0

0

i

WTIFJTIHTIFnx6 1: lf.ll I
I-I I- Lmatrixj

at a cost of n*6 multiplies

-T -1 -1 T
Ji [Wi Ji Hi] =

6x61
ful I J

matrix]

at a cost of n36 multiplies + (n-1)36 additions•

N[48n multiplies + (48n-36) additions].
The total cost of A is
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Calculating B:

Bi = HiAi = full full
matrix matri x

at a cost of 36 multiplies 30 additions. Using triangular factorization to

count the operation for B-1, the cost is 195 multiplies 71 divides 206

additions. Total cost for Aj is

N(48n + 36) + 195 multiplies
71 divides

N(48n) + 206 additions

To calculate the cost for a jacobian inverse a generalized inverse formulation

is used. Ji-1 = JiT[jiJiT] -I where Ji is the 6 x n
jacobian for the ith manipulator and n is the degree of freedom of the

manipulator. The cost is 12n + 6 multiplies 71 divides and 1On + 206

additions giving a total cost for Aj with calculation of the jacobian
inverse as

N(60n + 231) + 195
71N + 71

N(58n + 206) + 206

multiplies
divides

additions

Appendix Ill

6. LTM System Parameters

Motor constants (for all 7 joints)

Torque Constant KT 8.5

Back emf constant KE 6.3
Armature resistance R 2.5

Armature inertia Jm 0.0015

Viscous Damping D 0.3

Static Friction Tf 0.8

oz-in/A

V/KRPM
OHM
oz-in-sec 2

oz-in-KRPM
oz-in

Gear ratio from motor shaft to joint (assuming conventional gear driven joints)

Joint 1 522

Joint 2 522

Joint 3 522

Joint 4 522

Joint 5 121

Joint 6 121

Joint 7 25

Denavit and Hartenberg parameters
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Joint

where

joint

I

2

3

4

5

6

7

Inertia Matrix

Denavi t-Hartenberg Parameters

d a a o

0

0

0

0

0

0

5.9"

_90 °

90°

_90 °

90°

_90 °

0

23"

0

20"

0

eI + 90 °

o2

e3 - 90 °

o4

e5

e6 + 90 °

e7 - 90 °

90°

0

0

0

Link

Number

1

4

6

7

Inertia Matrix

KG-M

0.029
0.0

0.0

0.0

0.0145

0.0

0.0

0.0

0.0145

0.029

0.0

0.0

0.0

O.2989

0.0

0.0

0.0

O.2989

0.029

0.0

0.0

0.0

0.0145
0.0

0.0

0.0

0.0145

0.029

0.0

0.0

0.0

0.2296

0.0

0.0

0.0

0.2296

0.0163

0.0

0.0

0.0

O.0082

0.0

0.0

0.0

O.0082

0.0163

0.0

0.0

0.0

O.0269

0.0

0.0

0.0

O.0269

0.0182

0.0
0.0

0.0

O.0099

0.0

0.0

0.0

O.0099

the orlentation matrix is referenced to

Orientation

Matrix

1.0 0.0 0.0

0.0 0.0 -I.0
0.0 1.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

1.0 0.0 0.0

1.0 0.0 0.0

0.0 0.0 -1.0

0.0 1.0 0.0

0.0 -i.0 0.0

0.0 0.0 1.0

-I.0 0.0 0.0

1.0 0.0 0.0

0.0 0.0 -1.0

0.0 1.0 0.0

1.0 0.0 0.0

0.0 0.0 1.0

0.0 -1.0 0.0

0.0 -1.0 0.0

0.0 0.0 1.0

-1.0 0.0 0.0

the base of LTM.
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